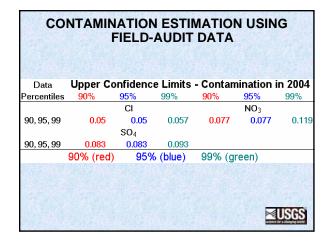
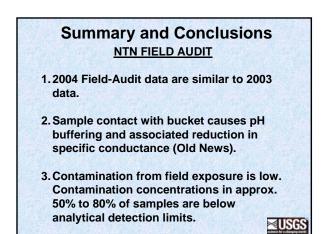
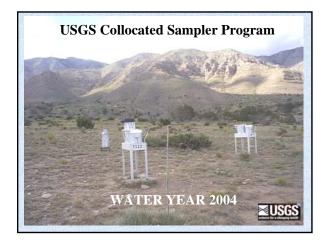
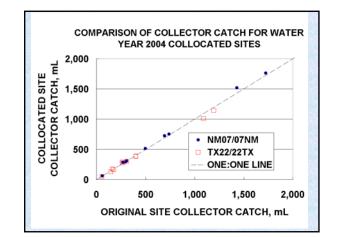


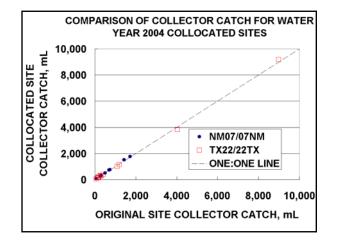
Performance	2003 IS	2004	2004
Evaluation	Results	Study #52	Study #53
Category	(Comparison)	Results	Results
Site operators	92.1%	226 / 93%	216 / 88%
Acceptable pH measurements	86.5%	88.8%	89.4%
Acceptable SC measurements	96.8%	94.7%	97.1%

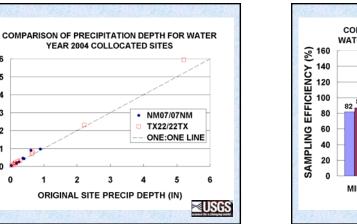


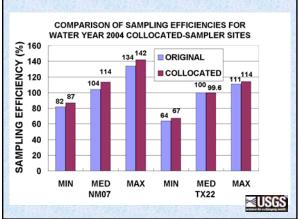


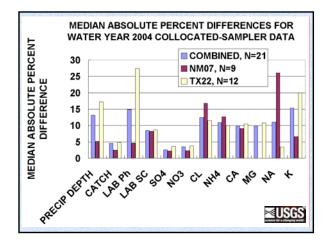


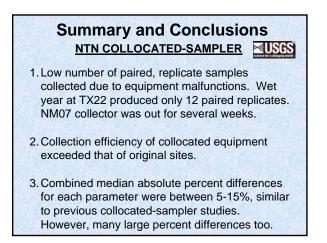


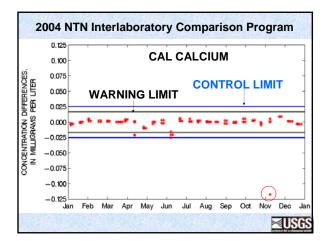

Data	Upper Co	nfidence	Limits	- Contar	nination ir	2004
Percentiles	90%	95%	99%	90%	95%	99%
		Ca			Mg	
90, 95, 99	0.041	0.041	0.051	0.009	0.009	0.012
		Na			к	
90, 95, 99	0.029	0.029	0.03	0.013	0.013	0.038
		NH4			Н	
90, 95, 99	0.04	0.04	0.04	1.31	1.31	1.36
	90% (red)	95%	(blue)	99% (gi	reen)	

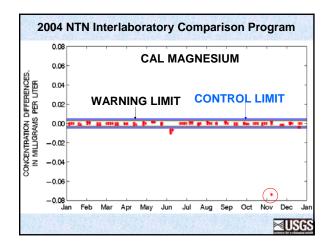


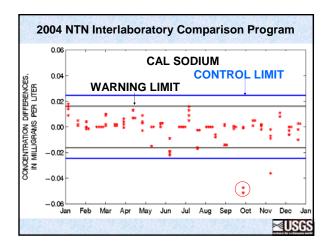


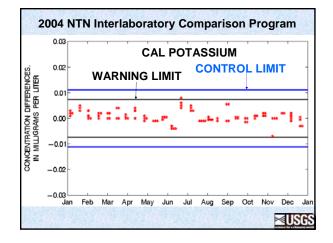


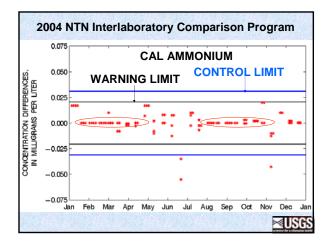


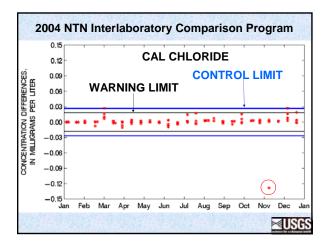


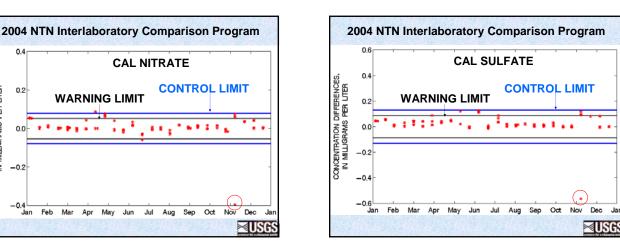


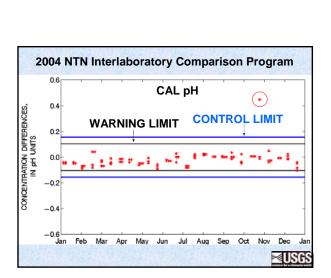

COLLOCATED SITE PRECIP


DEPTH (IN)





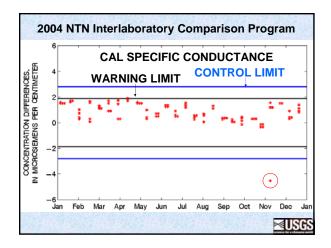




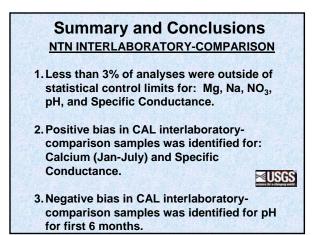
0.4

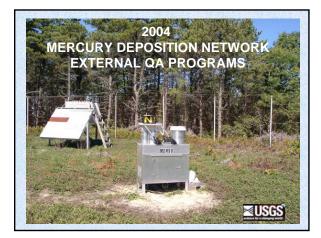
0.2

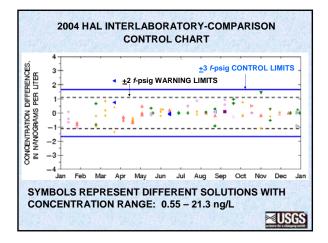
0.0 .

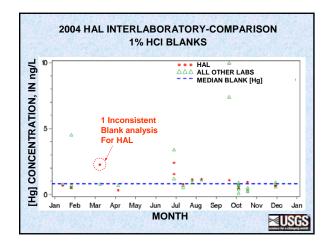

-0.2

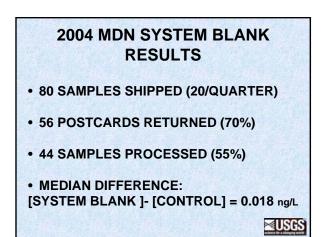
-0.4∟ Jan

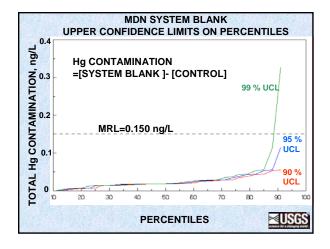

Feb

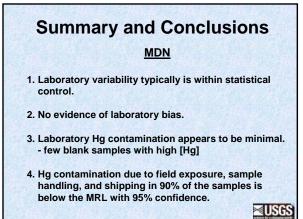

Mar

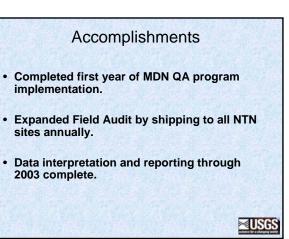

CONCENTRATION DIFFERENCES IN MILLIGRAMS PER LITER

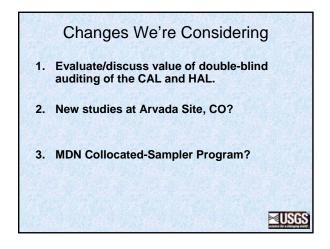



MUS68

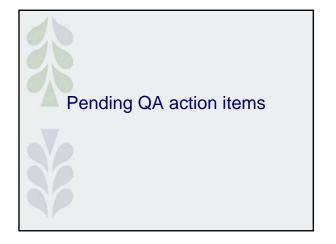






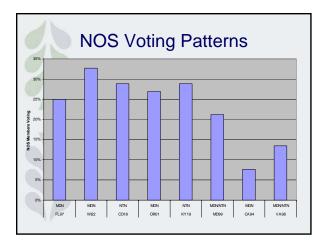





Accomplishments

- Collocated-sampler studies at: NM07, TX22, and Arvada Site, CO.
- Started long-term collocated-sampler operations at: AZ03, WI98, and VT99.
- Article: Wetherbee, Latysh, and Gordon, 2005, "Spatial and Temporal Variability of the Overall Error of NADP Measurements Determined by the USGS Collocated-Sampler Program, Water Years 1989-2001," <u>in</u> Environmental Pollution no. 135.

≥USGS



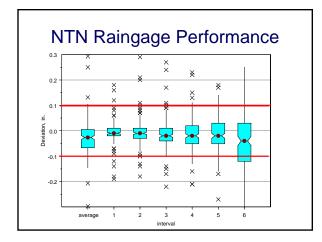
NOS QA Issues

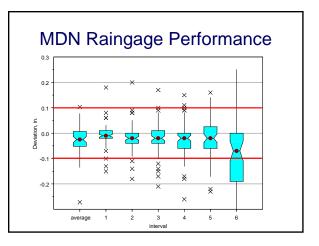
- · Voting on New Sites
- Recommendations for MDN Sample Archive & Reanalysis Program
- Site Operator Procedures for Field Calibration of Belfort Raingages
- Guidelines for Annual Laboratory QA Reports

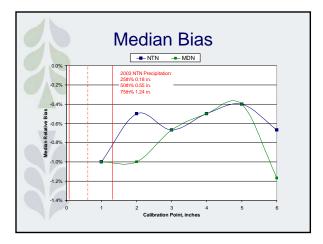
Voting on New Sites NOS currently votes to grant "exception" to new NADP sites not meeting siting criteria guidelines

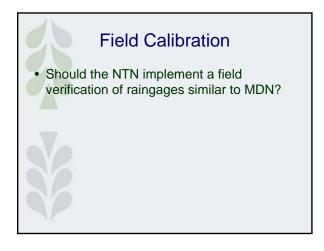
Proposal—New Site Approval

 Appoint NOS Chair, Vice Chair & QA manager to approve all future sites that do not meet NADP siting criteria guidelines

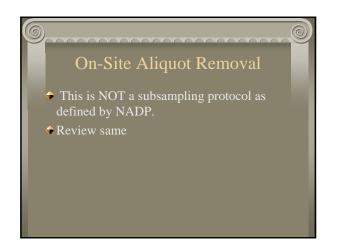

MDN Sample Archive and Reanalysis

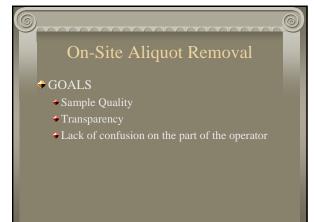

- Issue raised at 2003 HAL Review
- Spring 2004 NADP Meeting:
 - A task group was appointed to create recommendations and determine the need for an MDN sample archive program and to explore sample re-analysis procedures and report back to NOS...


Field Calibration of Belfort Raingages


- Issue raised to address calibration/verification of Belfort Raingages between ~3-yr on-site Surveys
- Spring 2004 NADP Meeting:
 - A task group formed to develop site operator procedures and SOPs for calibrating rain gages and maintenance and to report these findings to NOS at the 2004 Fall Technical Meeting.

NTN & MDN Raingage Performance ATS verifies calibration of raingages using standardized weights at each 1" interval Gage tolerance = 0.1" Raingage performance, 2002-- 47% of NTN gages pass 0-6" - 33% of MDN gages pass 0-6"





Guidelines for Annual Laboratory QA Reports

- Under development by QAAG
- Historically, laboratory QA reports reviewed by NOS members appointed by committee
- Guidelines have report reviewed by QA Manager and 2 others chosen by lab director
- Report approved by QAAG
- Due 18 mo after end of calendar year

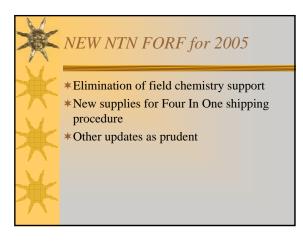
9

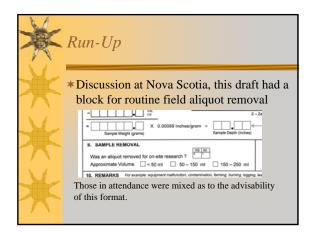
On-Site Aliquot Removal

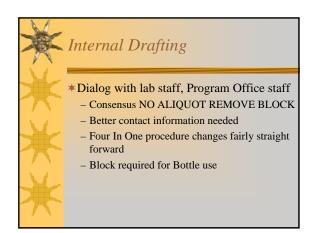
- Major Components
 - No CAL/PO tracking of participants
 - No operational or materials support from CAL
 - Specific "one-shot" 20 mL procedure

On-Site Aliquot Removal

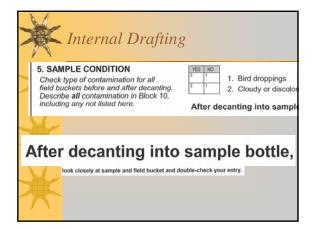
- From JAN 2005 protocol change note to all sites
 PAGE 1
- 3) This change does not effect anything else about your weekly "Every Tuesday Morning"routine. You will continue to remove the field bucket and raingage chart, pour your sample into the 1-liter sample bottle, and send the samples to CAL. You can even continue to do pH and conductance analysis if you choose (more about that later).

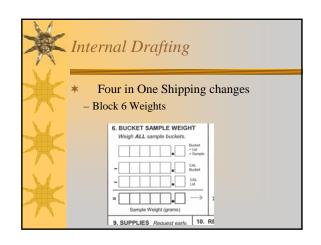

On-Site Aliquot Removal

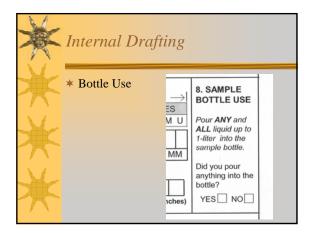

From JAN 2005 protocol change note to all sites PAGE 2


3) You may choose to continue field pH and conductance analysis. First, discuss this issue with your site supervisor, if you agree to continue field chemistry, read the attached procedure and call Scott with any questions. Remember, there will be no direct CAL support for probes, solutions, trouble-shooting, etc. after 12/31/2004.

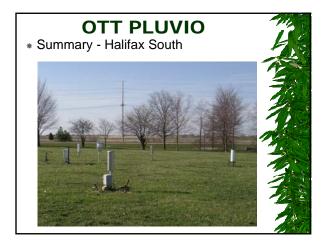
Con-Site Aliquot Removal From JAN 2005 protocol change note to all sites 6) The following pages provide step-by-step changes to the following procedures. You will...... C) Instructions for aliquot removal from the 1-liter sample bottle should you continue field chemistry (pH and conductance) measurements Again, thank you, and please call Scott at 800-952-7353 with any questions.

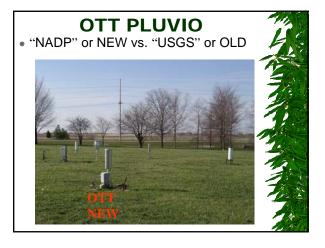

6	On-Site Aliquot Removal
	3-256
	1-05 addendum
	REMOVING AN ALIQUOT TO CONDUCT ON-SITE pH AND
	CONDUCTANCE MEASUREMENTS STARTING JANUARY 2005
	Insert this page in the NTN Site Operation Manual (July 1999 edition) in front of page 3-25.
	1. Volume requirements
	A) Up to 20 mL may be removed from any sample with a volume greater than 70 mL
	(>70 grams Sample Weight from Block 6 of the FORF) for on-site field chemistry
	measurements. The CAL requires at least 50 mL (grams) of sample for complete
	chemical analysis.
	B) If you have less than 70 grams of liquid, do not remove any sample from the
	sample bottle.
	NOTE: Sites requiring a larger volume must seek pre-approval from the
	NADP Program Office.
	2. Filling your container
	A) You must provide your own supplies to remove an aliquot for field chemistry. See
	supplies list (Appendix page A-3, 12/04) if you intend to continue field chemistry
	measurements.
	B) If you have 70 grams of sample or more, pour up to 20 mL from the 1-liter sample
	bottle into your container.
	C) Ensure that there is no rim-to-rim contact between the 1-liter sample bottle and
	your container.
	D) Do not attempt to replace samples which are spilled in this transfer.

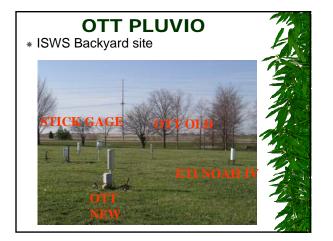


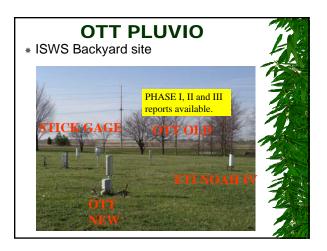








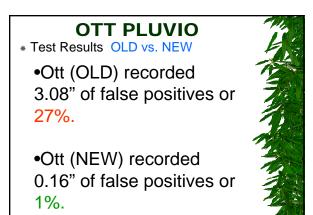


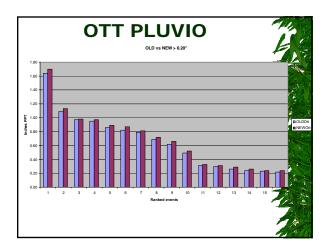


OTT PLUVIO

* Test Design

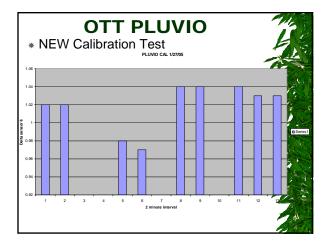
- Data retrieval post event
- Stick gage weighed for measurement
- Common winterization protocol
- Roger does OTT OLD (USGS), ETI IV
- Van does Stick
- Scott does OTT NEW (NADP-Halifax)
- Roger checks for false positives using local condition summaries (radar, surface
- observations) and summaries data
- No accompanying Belfort gage
- Data collection started 12/2/2004



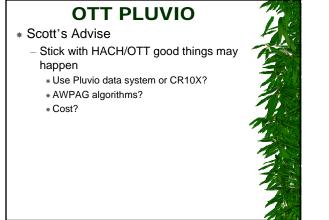

OTT PLUVIO

- Operational notes

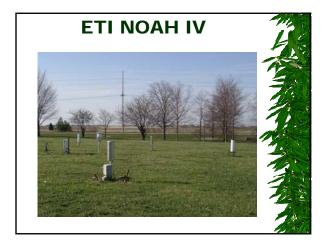
 Cabling confusing, lack of manual
 - The gage must be oriented correctly as the IRDA port is sensitive to low sun angles in the winter. IrDA to North.
 - The case does not slide easily off the internal mechanism. Firm mounting should take care of this.
 - The cabling for serial connection is not weather 4 rugged.
 - AC to DC power supply(PS) not hard to make or install.
 - PS plus serial cables adds \$300 to the cost of gage



• Test Results • AFTER TRIMI POSITIVES	N	E ·	The second second	
Statistic	Ott (OLD)	Ott (NEW)		13
Number of Events	28		28	1
Mean Precipitation (inches)	0.40(0)	0.42(0)		11
Median Precipitation (inches)	0.23(0)	0.25(0)		
Total Precipitation (inches)	11.21	11.77		125
Paired t-Test	Mean Difference	p-value	Hyp: Mean Difference = 0	1
Ott (OLD) vs. Ott (NEW)	$-0.02(0) \pm 0.00(6)$	0.0000	Reject	
Wilcoxon signed	Wilcoxon signed-rank test			146
Ott (OLD) vs. Ott (NEW)		0.0000	Reject	1 The


Statistic	NWS Stick	0	tt (OLD)	2
Number of Events	28		28	Ξc
Mean Precipitation (inches)	0.40(0)		0.40(0)	
Median Precipitation (inches)	0.24(1)		0.23(0)	
Total Precipitation (inches)	11.19	11.21		12
Paired t-Test	Mean Difference	p-value	Hyp: Mean Difference = 0	
NWS Stick vs. Ott (OLD)	$-0.00(1) \pm 0.00(7)$	0.8603	Do Not Reject	1
Wilcoxon signed	p-value	Hyp: Mean Difference = 0	1	
NWS Stick vs. Ott (OLD)	0.6903	Do Not Reject	12	

Statistic	NWS Stick	0	tt (NEW)
Number of Events	28		28
Mean Precipitation (inches)	0.40(0)		0.42(0)
Median Precipitation (inches)	0.24(1)		0.25(0)
Total Precipitation (inches)	11.19		11.77
Paired t-Test	Mean Difference	p-value	Hyp: Mean Difference = 0
NWS Stick vs. Ott (NEW)	-0.02(1) ± 0.00(9)	0.0000	Reject
Wilcoxon signed-rank test			Hyp: Mean Difference = 0
NWS Stick vs. Ott (NEW)			Reject



OTT PLUVIO

- Halifax South-Future
 - New Pluvio has very little false positives
 - The IRDA download system works well routinely.
 Calibration instructions received at the PO on
 - Calibration instructions received at the PO off 4/7/2005
 CDD will be these NEW
 - SRD will calibrate NEW
 - SRD will check NEW vs. OLD calibrations
 Continue to operate and report
 - Work with OTT and Infrastructure Committee on outstanding issues

NADP/NOS Spring 2005 Attachment 6

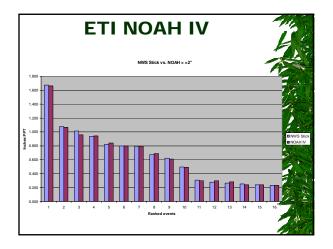
ETI NOAH IV

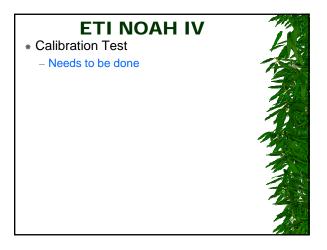
* Test Design

- Data retrieval post event
- Stick gage weighed for measurement
- Common winterization protocol
- Roger does OTT OLD (USGS), ETI IV
- Van does Stick
- Scott does OTT NEW (NADP-Halifax)
 Roger checks for false positives using local condition summaries (radar, surface observations) and summaries data

- No accompanying Belfort gage
- Data collection started 12/2/2004

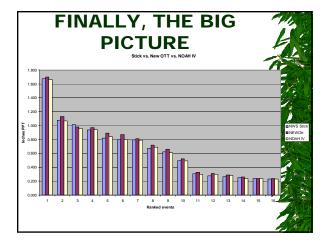
ETI NOAH IV


- * Operational notes
 - Hard to get cover off, so download is always by PALM PDA
 - No external serial cable
 - AC/DC power supply provided
 - Beta test unit
 - Infrared "eyeballs" are within the orifice, is this a good idea


* Test Results False positives

•For the period of record (10/14/2004 to current) the gage has shown no false positives

		AH	
Statistic	NWS Stick	N	OAH IV
Number of Events	49		49
Mean Precipitation (inches)	0.46(4)		0.46(1)
Median Precipitation (inches)	0.25(2)		0.24(0)
Total Precipitation (inches)	22.73		22.61
Paired t-Test	Mean Difference	p-value	Hyp: Mean Difference = 0
NWS Stick vs. NOAH IV	0.00(2) ± 0.00(7)	0.4697	Do Not Reject
Wilcoxon signed-	-rank test	p-value	Hyp: Mean Difference = 0
NWS Stick vs. NOAH IV			Do Not Reject



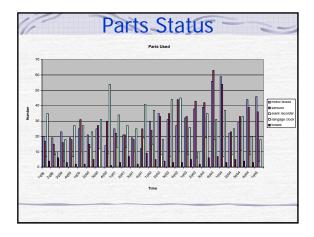
ETI NOAH IV

- * NOAH Future
 - Test for Pocket PC 2003 compatibility
 - Calibration check
 - Continue to operate and report
 - "Open" CR10X data logger is good
 - Work with ETI and Infrastructure Committee on outstanding issues

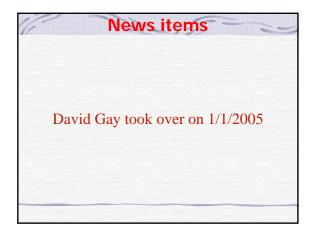
Baseline – Version demonstrated at Halifax - Additional modifications?

- Rectify the calibration offset?
- Documented field calibration capability and instructions?
- Capability to accept and record/log up to four digital input signals from external devices?
- Customized version of PDA software?
- PDA software code segments to incorporate into a NADP custom-written PDA software package?
- Decreased data transmission time (during data download from Pluvio)?
- Modifications to the PDA software data file structure?

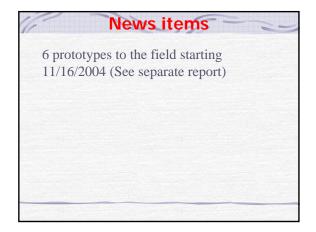
≊USGS

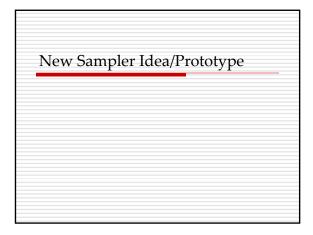

Baseline – Version demonstrated at Halifax. Additional modifications?

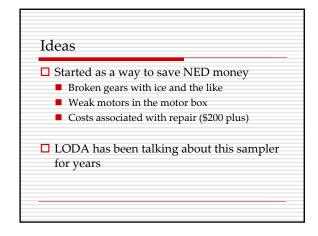
- PDA purchase through Hach Environmental?
- Separate cable connections for RS232 signal and digital input signal(s)?
- Weatherproof / more robust cable connectors?
- Pulse output signal?
- I10VAC power supply (or supply of an external 110VAC / 12VDC transformer)?
- Provide a complete installation and operating instruction manual?

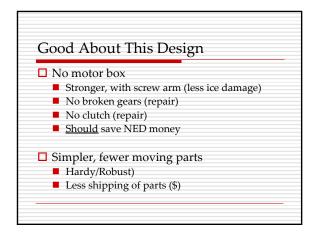

≊USGS

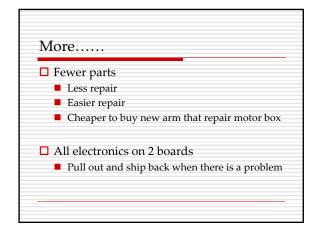
PART	A	AILAB	E R	EPLACE	D last	12 mos
a motor be	oxes	47		141 do	own 17%	
sensors		59		131 do	own 28%	
· event re	corders	24		31 do	wn 37%	
		48			own 21%	
gage closed						
gage me	echanis	ns 21		12 do	own 43%	
				====		
				413		
YEAR	1999	2000	2001	2002	2003	2004
motor boxes	76	96	77	122	171	154
Sensors	62	104	80	135	188	149
 event recorde 	rs 23	37	61	40	49	34
gage clocks	84	102	143	143	101	115
gages	14	9	22	16	19	15
	===					
TOTAL	259	348	383	456	528	467

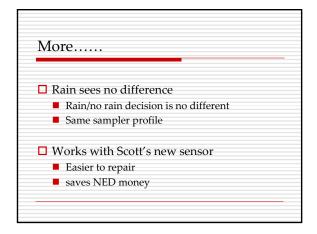


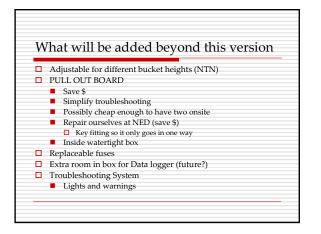


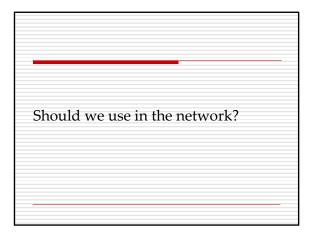


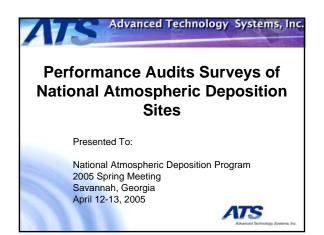


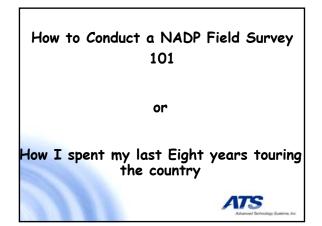


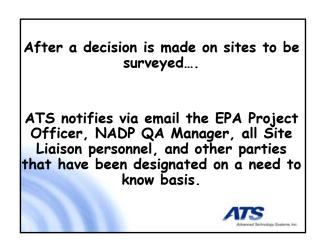


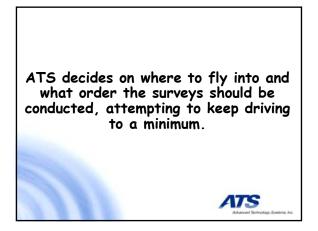


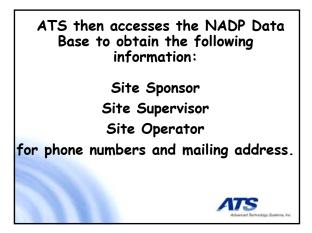






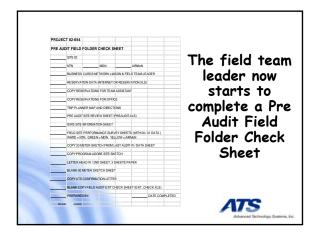






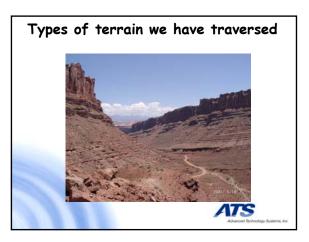
Email provides a list of sites, dates for the survey, a request from the QA Mgr. for up dated "Adobe" site sketches, and a request for a date to conduct a pre audit telephone conservation with the site Liaison people.

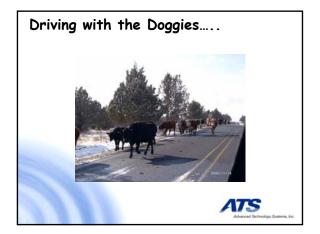
ATS Adarced Technology Systems, Inc

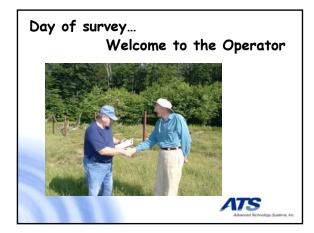

Now the FIELD Team leader goes to work

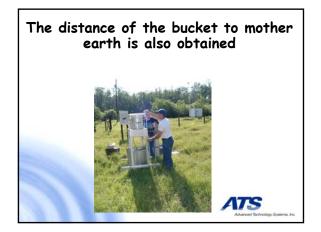
First they make flight and hotel reservations

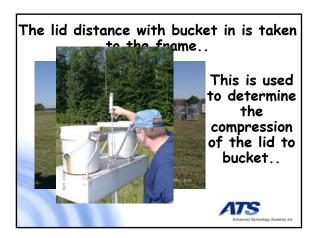
Next they inventory all the survey gear and check operations and charge batteries

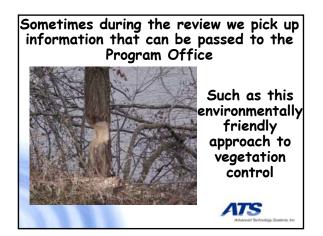

ATS

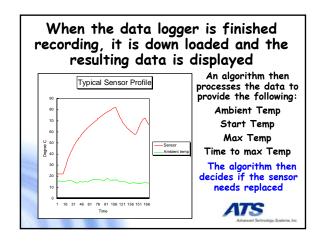


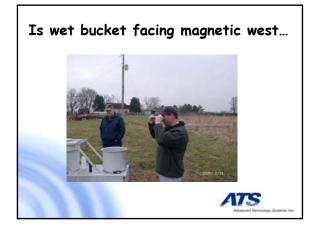


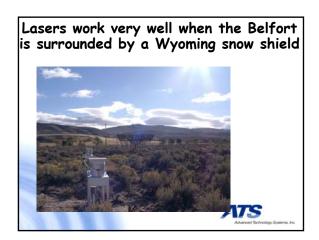


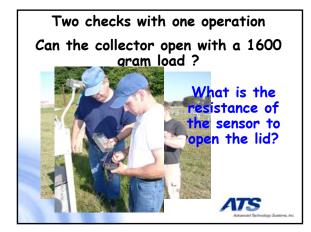




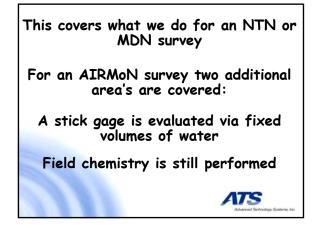


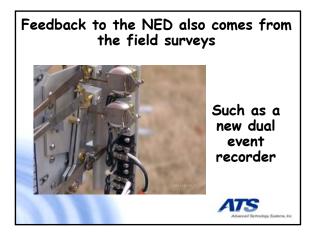






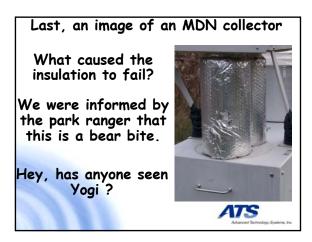
And instruct the operator requirements maintaining ATS

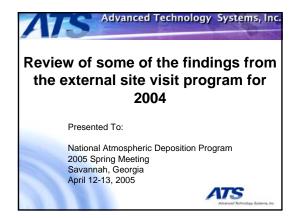


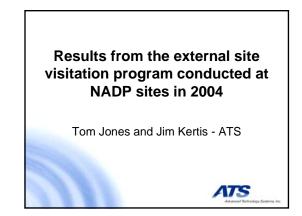


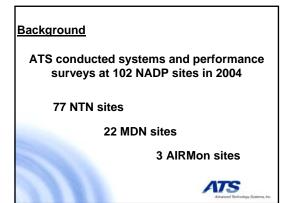


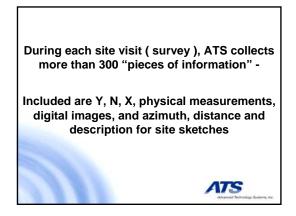
By documenting the problem ATS was able to report back on the area that needed to be corrected, in order to make the device work properly.

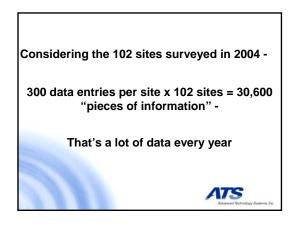


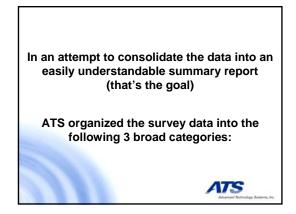

Answer: Close the air gap between the solenoid and clapper arm


ATS


Reference

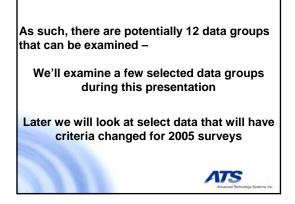

2004 Summary Report (Draft) submitted to

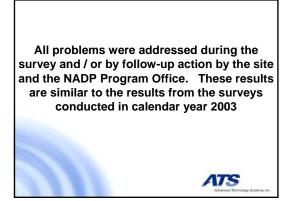

Messrs.

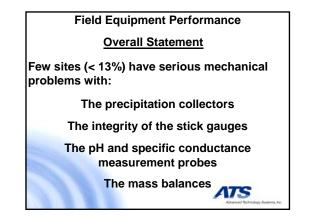

Michael Kolian – U.S. EPA Christopher Lehmann – ISWS In March 2005

> ATS Advanced Technology Systems, Inc.

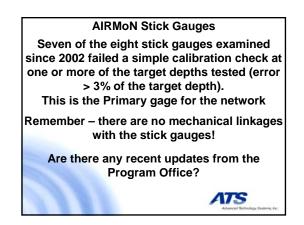
Within each of the 3 broad categories, ATS subdivided the data (where appropriate) that are:

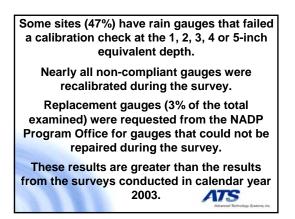

Common to all three NADP networks

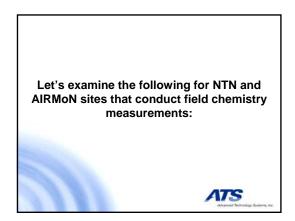

Unique or pertinent to NTN and AIRMoN only

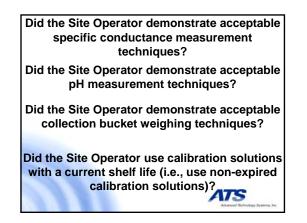

Unique or pertinent to MDN only

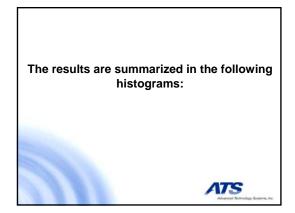
Unique or pertinent to AIRMoN only

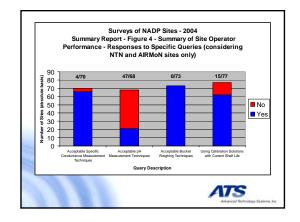


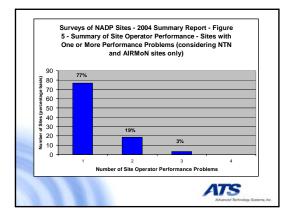


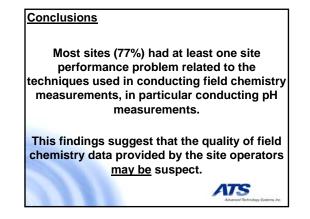


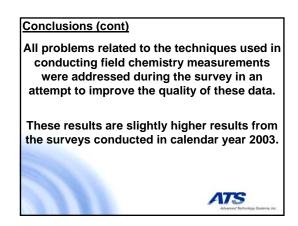

However, there are some exceptions – MDN Max / Min Thermometers More than 65% of the sites had max / min thermometers that failed a simple performance check (the HAL supplies the thermometers). These results show an increase to the results from the surveys conducted in calendar year 2003. We will return to this later

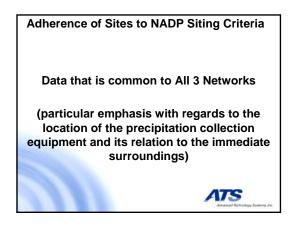


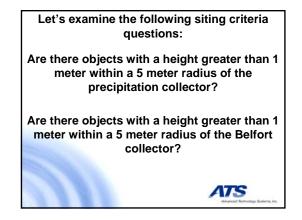


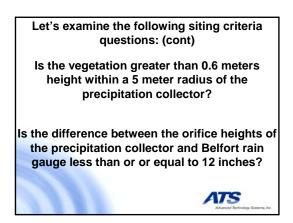


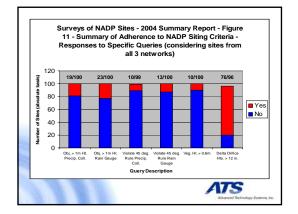


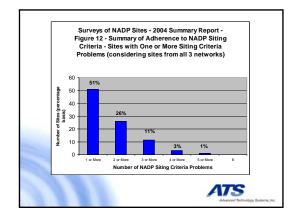


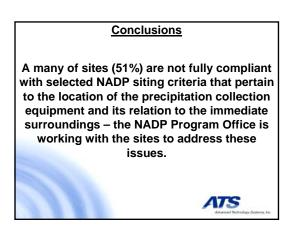


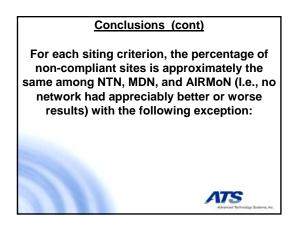


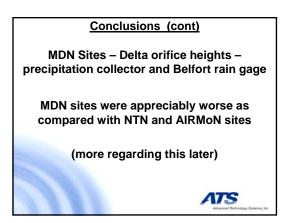


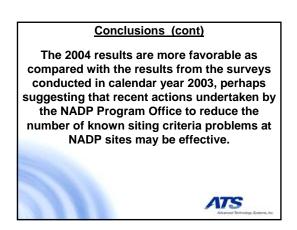


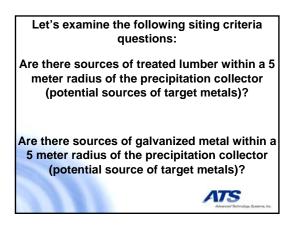

NADP/NOS Spring 2005 Attachment 10

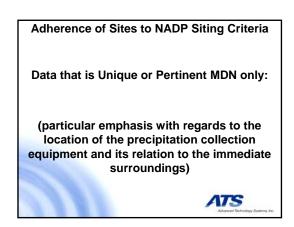


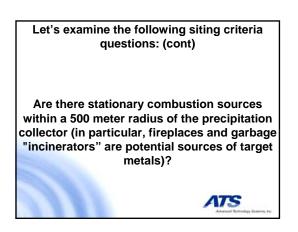


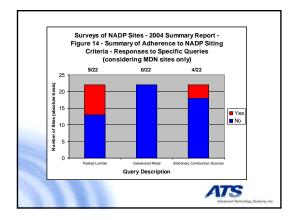


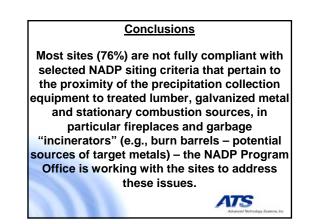


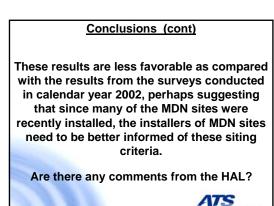


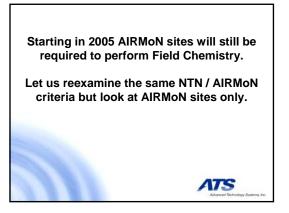


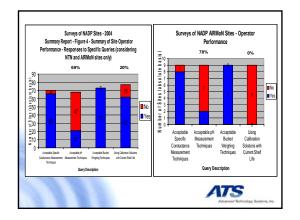


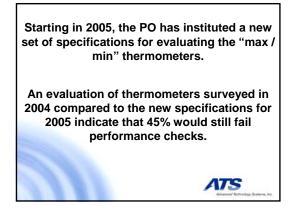


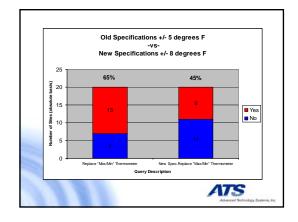


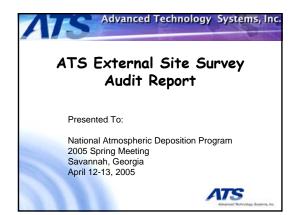


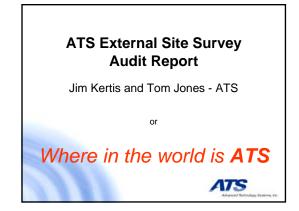


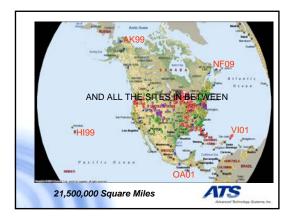


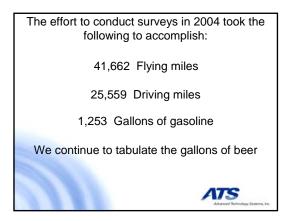








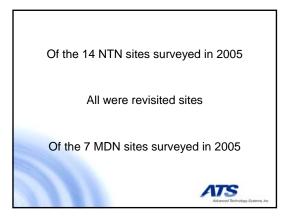




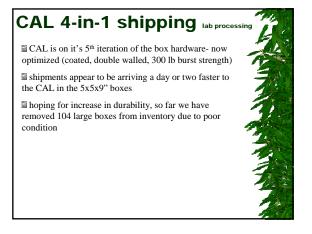


NADP/NOS Spring 2005 Attachment 11


Including the sites already audited for this year (2005) **ATS** is still looking for 83 sites to complete the target of 104 sites


We hope this schedule will be flexible to accommodate new sites that come on line for this year.

With this flexibility lies the potential for more than 49 sites to be carried into 2006 for surveys. A frequency of 3 ½ years between visits



CAL 4-in-1 shipping problems

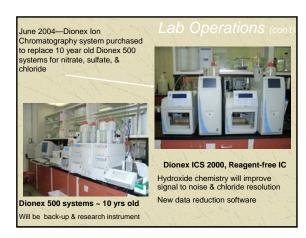
conversion to latest box version will be ongoing for quite some time

difficult to determine rate of large box usage

unable to get box dimensions beneath UPS and FEDX overage limits (girth + ht. = 92", UPS max. = 84) so Billable Weight = 30 lbs. In

Ion Chromatography-new instrument

Background


- CAL has used ion chromatography with carbonato/bicarbonato aluant for the anions
- carbonate/bicarbonate eluant for the anions (CI, NO3, SO4) since 1985
- Dionex istruments (DX-500) are now ~ 10 yrs old & need to be replaced with new systems

Dionex ICS-2000

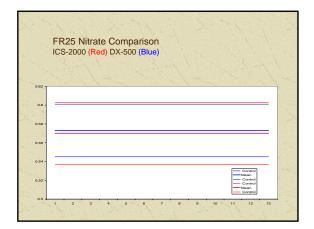
- Replacement instruments (ICS-2000) were purchased June 2004
- Potassium hydroxide eluant method investigated
 Eluant generation, low signal/noise, no negative peak for chloride
- Method comparison study needed

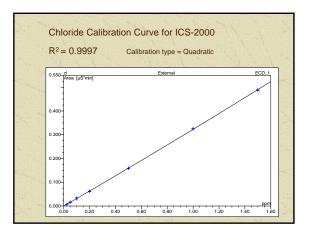
ICS-2000 Method Development

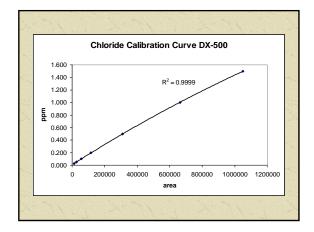
- 1.Bias/Accuracy (known conc. solns)
- 2.Precision (control charts)
- 3.Recovery (spiked precipitation samples)
- 4.Detection limits (FR10 & low level standard)
- 5. Working range (calibration range)
- 6.Performance evaluation samples (external QA)
- 7.Differences between DX-500 and ICS-2000 (real samples)

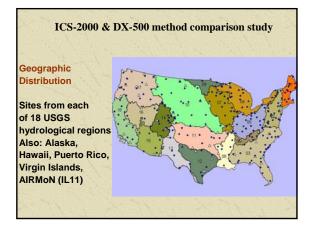
ICS-2000 Method Deve Differences between DX-5	
<u>DX-500</u>	<u>ICS-2000</u>
AS4A Column	AS18 Column
Isocratic Method	Isocratic Method
Eluent: 1.75 mM NaHCO3/ 1.80 mM Na ₂ CO ₂	Eluent: 35 mM KOH
Detection: Suppressed conductivity	Detection: Suppressed conductivity
Flow Rate: 2.0 mL/minute	Flow Rate: 1.0 mL/minute
Injection Volume: 250 µL Run Time: ~ 9.5 minutes	Injection Volume: 25 µL Run Time: ~ 9.5 minutes

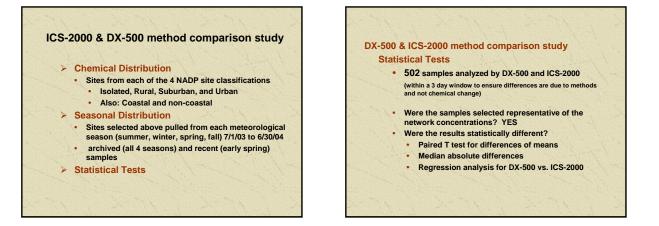
	High Purity	y Stanc	lard One (Compar	ison For IC	S 2000	IC
101115	CL		NO ₃		SO4		
	Target (0.25 mg/L) ?? +/- 0.01	SD	Target (0.50 mg/L) +/- 0.02	SD	Target (2.47 mg/L) +/- 0.10	SD	N
DX-500	0.211	0.004	0.499	0.009	2.484	0.017	6
ICS-2000	0.217	0.003	0.499	0.005	2.505	0.019	10
SWS1 DX-500	0.215	0.004	0.501	0.002	2.521	0.008	4

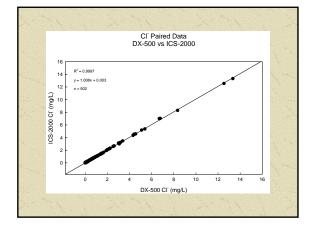

		Interlabo	ratory Cor	nparison vs.	ICS2000 Ion C	hromatog	raph		
Interlaboratory Comparison Study	ICS2000	Cl(mg/L) Original	Target	1CS2000	NO3(mg/L) Original	Target	ICS2000	SO4(mg/L) Original	Target
NWRI FP84 sample #3	0.095	0.091	0.09	0.784	0.871	0.872	0.671	0.676	0.69
NWRI FP85 sample #5	0.975	0.976	0.944	1.018	1.039	1.018	3.330	3.348	3.24
WMD 2004O sample #3	0.399	0.393	0.398	0.740	0.733	0.730	1.139	1.131	1.120
USCS samples 2004341010 2004341013	0.593	0.59610.607	0.590	2.127	2.114/2.112	2.100	3.863	3.881/3.880	3.850
USCS samples 2004355002 2004355013	1.112	1.104/1.119	1.100	0.339	0.342/0.340	0.339	0.562	0.567/0.563	0.56
n	13			13			13		

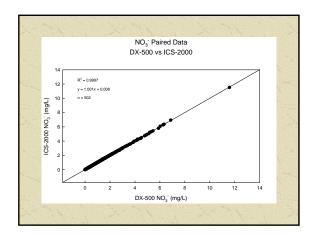

			-			
1000			œ			
	IC	S-2000		DX	-500	Target
and the second s	mean (mg/L)	precision (mg/L)		mean (mg/L)	precision (mg/L)	(mg/L)
Standard 1	0.026	0.0009		0.026	0.003	0.025
Standard 7	1.495	0.0053		1.501	0.010	1.500
			NO ₃			
Standard 1	0.051	0.0019		0.057	0.003	0.050
Standard 7	5.992	0.0189		6.017	0.027	6.000
			SQ4			
Standard 1	0.053	0.0021		0.058	0.004	0.050
Standard 7	5.994	0.0247		6.012	0.022	6.00

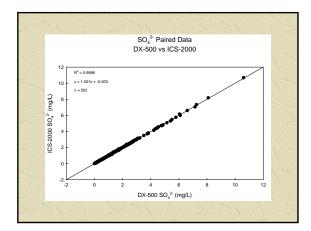

86-105% 0.349 to 0.531 96.2-104.6% 0.378 to 0.869 95.9 to 102		CL	mg/L	NO3	mg/L	SO_4
	.027 to 1.18	86-105%	0.349 to 0.531	96.2-104.6%	0.378 to 0.869	95.9 to 102.89
	122.00	100000				1.2.4

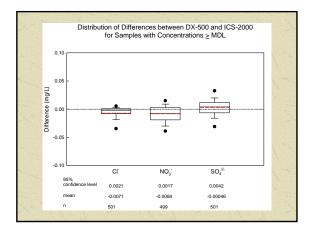

	Metl Detectio		
	<u>DX-500</u>	ICS-2000	<u>n</u>
> Chloride	0.008	0.008	11
>Nitrate	0.009	0.014	12
Sulfate	0.013	0.005	12

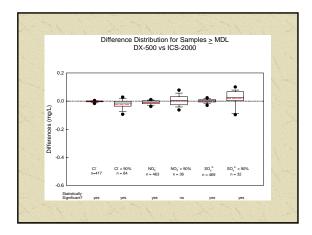

	<u>DX-500</u>	ICS-2000
Chloride	0-1.50	0-1.50
Nitrate	0-6.00	0-6.00
Sulfate	0-6.00	0-6.00

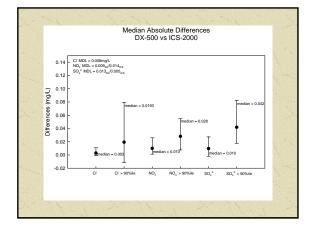


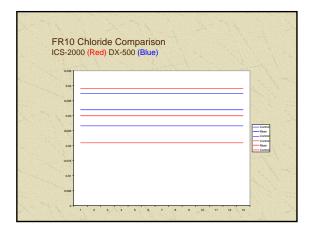


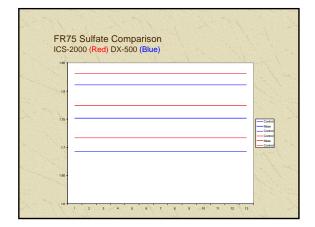












			(ISFR25 - new ICS20	00		
Parameter Cl ⁻	-Control 0.044	-Warning 0.046	Mean 0.050	+Warning 0.054	+Control 0.056	8 0.002	n 20
NO3'	0.537	0.548	0.570	0.592	0.603	0.011	21
SO42-	0.476	0.483	0.497	0.511	0.518	0.007	21
				ISFR75 - new ICS20	00		
Parameter	-Control	-Warning	Mean	+Warning	+Control	8	n
CI	0.218	0.221	0.227	0.233	0.236	0.003	20
NO ₃	1.751	1.766	1.796	1.826	1.841	0.015	20
SO42	1.717	1.736	1.774	1.812	1.831	0.019	20
				ISFR10 - new ICS20	00		
Parameter Cl ⁻	-Control 0.021	-Warning 0.024	Mean 0.030	+Warning 0.036	+Control 0.039	s 0.003	<i>n</i> 11
NO ₃ :	0.264	0.269	0.279	0.289	0.294	0.005	12
NO3	0.264	0.269	0.279	0.289	0.294	0.005	12
SO42-	0.213	0.215	0.219	0.223	0.225	0.002	12

		199 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
		Cŀ		
Sample ID	Measured Concentration DX-500/ICS-2000	Calculated Concentration	Recovery	Recovery Range
	(mg/L)	(mg/L)	%	%
NZ9692SWMA08	0.252/0.251	0.264	105.2	101-111
NZ9748SWWA21	1.155/1.178	1.181	100.3	99-101
NZ9784SWNC29	0.531/0.542	0.557	102.7	98-114
NZ9821SWTN11	0.031/0.032	0.027	85.8	63-110
		NOr		
NZ9692SWMA08	0.531/0.528	0.552	104.6	101-108
NZ9748SWWA21	0.346/0.352	0.366	103.8	97-108
NZ9784SWNC29	0.350/0.357	0.381	106.6	100-114
NZ9821SWTN11	0.372/0.389	0.374	96.2	91-104
		SO _e -		
NZ9692SWMA08	0.695/0.702	0.721	102.8	101-105
NZ9748SWWA21	0.383/0.392	0.395	100.7	95-107
NZ9784SWNC29	0.845/0.869	0.890	102.4	101-105

Organic and total nitrogen in NADP precipitation samples

NADP- CAL measures inorganic nitrogen (as nitrate and ammonium) in precipitation

Total nitrogen & organic nitrogen measured in selected samples since 2002. Method involves an in-line digestion, and FIA analysis for Ntotal

(Ntotal - Ninorganic = DON)

Continuing to run TN on selected samples

SOPs, control charts, MDL established.

Ready for white paper or sites wanting to do special research projects.