Atmosphere-Land Dynamics of Mercury in a Forest Landscape of the Adirondack Region of New York

Charles T. Driscoll, Syracuse University
Hyun-Deok Choi, Clarkson University
Thomas M. Holsen, Clarkson University
Joseph T. Bushey, University of Connecticut
Alexei G. Nallana, Syracuse University
Pranesh Selvendiran, Syracuse University

Sources of Support

National Science Foundation
US Environmental Protection Agency
New York State Energy Research and Development Authority
Outline

- Background and site description
- Forms of Hg in the atmosphere
- Hg inputs – wet deposition and throughfall
- Foliar Hg
- Soil Hg emissions
- Stream losses and mass balance
Huntington Wildlife Forest
Newcomb, NY

- MDN monitoring NY20 station
- U.S. EPA CASTNET
- Latitude: 43.9731
- Longitude: -74.2231
- Elevation: 500m
Deciduous throughfall & Emission

Wet deposition

Coniferous throughfall & Emission

Ambient air
Arbutus Lake Watershed-352 ha
Atmospheric Hg

- **Sampling Method**
 - June 2006 ~ May 2007
 - Tekran automated Hg species system
 (Tekran model 2537A, 1130, and 1135)

- **Analytical Method**
 - CVAFS
Overall Concentrations

<table>
<thead>
<tr>
<th></th>
<th>GEM (ng/m³)</th>
<th>RGM (pg/m³)</th>
<th>HgP (pg/m³)</th>
<th>RGM/TGM (%)</th>
<th>HgP/PM (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>1.39</td>
<td>1.77</td>
<td>3.22</td>
<td>0.12</td>
<td>0.22</td>
</tr>
<tr>
<td>S. E.</td>
<td>0.01</td>
<td>0.04</td>
<td>0.07</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Median</td>
<td>1.31</td>
<td>1.19</td>
<td>2.35</td>
<td>0.09</td>
<td>0.17</td>
</tr>
<tr>
<td>S.D.</td>
<td>0.36</td>
<td>2.20</td>
<td>3.73</td>
<td>0.15</td>
<td>0.22</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.51</td>
<td>< MDL</td>
<td>< MDL</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Maximum</td>
<td>2.52</td>
<td>45.44</td>
<td>53.98</td>
<td>3.45</td>
<td>3.02</td>
</tr>
<tr>
<td>N</td>
<td>3147</td>
<td>3136</td>
<td>3137</td>
<td>3147</td>
<td>3147</td>
</tr>
</tbody>
</table>
Monthly Variations of Hg

- Highest in winter and summer
- Lowest in fall
Diurnal Patterns

- **Forest Canopy**
 - Photoreaction
 - Air-foliar exchange
 - Hg emission from the forest floor
- **Warm seasons (all species)**
 - Significant diurnal patterns
- **Winter**
 - Weak diurnal patterns
Wet Deposition & Throughfall
Hg Concentrations

- **Leaf-on**
 - Throughfall > precipitation
 - 2 times higher (slope=0.53)

- **Leaf-off**
 - Throughfall > precipitation
 - Slightly higher (slope=0.86)

- **Precipitation quantity**
 - Throughfall 80% precipitation

The graph shows the comparison of mercury concentrations in throughfall and precipitation under leaf-on and leaf-off conditions. The equations for the linear regression models are:

- Leaf-off:
 - $Y = 0.53X + 1.15$, $R^2 = 0.45$

- Leaf-on:
 - $Y = 0.86X + 0.05$, $R^2 = 0.92$

The data points indicate that throughfall mercury concentrations are generally higher than those in precipitation, with a notably stronger correlation under leaf-on conditions.
Leaf Tissue

- **THg increase**
 - ~10x increase
 - Beech > Birch, Maple

- **Understory beech**
 - 42% higher

Yellow Birch

- THg (ng g⁻¹)
- 0 to 80
- r²=0.90
- 0.22 ng/(g·day)

Sugar Maple

- THg (ng g⁻¹)
- 0 to 80
- r²=0.80
- 0.23 ng/(g·day)

Am. Beech

- THg (ng g⁻¹)
- 0 to 80
- r²=0.90
- 0.35 ng/(g·day)

(a)

(b)

(c)
Soil Evasion

Dynamic Flux Chamber

DFC operation system for measuring Hg emission flux from soils
Leaf-off Periods

- Diurnal pattern
- Highly dependent on solar radiation and air temperature
- Most soil Hg is Hg\(^{2+}\). How is Hg reduced?
Leaf – off

- $F = Hg$ Emission Flux
- $R_S = $ Solar Radiation
- $T_A = $ Air Temp.
- $a = 0.0068$, $b = 0.075$, $c = 0.169$

Leaf – on

- $F = Hg$ Emission Flux
- $T_A = $ Air Temp.
- $a'' = 0.108$, $b'' = 0.0718$, $c'' = 8.14E-10$
Yearly Estimation

- Assuming
 - Zero emissions during snow cover
 - Zero emissions during rain events between 8 AM and 8 PM.
 - Leaf-on period is from May to Oct.

Cumulative estimated Hg emission flux is 6.3 μg m$^{-2}$ year$^{-1}$
Stream Flux

- Discharge driven flux
- "New" vs. "Old" Hg
- Limited particulate contribution (~25%)
- Wetlands are important in the supply of Hg species
Conclusions

- Concentrations of atmospheric Hg species are dynamic at this remote forest site.
- Hg inputs and soil emissions are important pathways.
 - Litterfall is the most important input.
 - Throughfall \approx emissions.
- High flow events result in elevated Hg loss.
- Soil and lake are net sinks of Hg inputs.